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A Predictive Control-Based Approach to Networked
Hammerstein Systems: Design and Stability Analysis

Yun-Bo Zhao, Guo-Ping Liu, Senior Member, IEEE, and David Rees

Abstract—In this paper, a predictive control-based approach
is proposed for a Hammerstein-type system which is closed
through some form of network. The approach uses a two-step pre-
dictive controller to deal with the static input nonlinearity of the
Hammerstein system and a delay and dropout compensation
scheme to compensate for the communication constraints in a
networked control environment. Theoretical results are presented
for the closed-loop stability of the system. Simulation examples
illustrating the validity of the approach are also presented.

Index Terms—Delay and dropout compensation scheme
(DDCS), Hammerstein system, networked control systems (NCSs),
predictive control, two-step approach.

I. INTRODUCTION

A CONTROL system is called a “networked control
system” (NCS) when the direct connections used in con-

ventional control systems between sensors, controllers, and
actuators are replaced by some form of communication net-
works with limited resource [1]–[4]. This configuration, which
is due to the network inserted, brings to the system lower
cost, flexibility, the ability of remote control, etc., whereas the
communication constraints of the network, e.g., the time delay
of data exchange through the network (so-called “network-
induced delay”), data packet dropout, quantization, medium
access constraint, etc., greatly degrade the performance of the
control systems, even making the system unstable under certain
conditions. Such a configuration presents a new challenge to
conventional control theories [5].

The limits to the performance of control systems in a
networked control environment are caused primarily by
network-induced delay and data packet dropout [5]. These
communication constraints can mean in NCSs that the control
signal for the plant is delayed or even unavailable, which
results in an open loop system. The desire to obtain a better
performance than that resulting from holding the last available
control signal or using zero control during open loop intervals
in NCSs has led to a model-based control architecture [6]
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and to a predictive control-based control architecture [7],
[9]–[12]. The key idea of the model-based approach is that
the knowledge of the plant dynamics is used to reduce the
usage of the network, whereas in the predictive control-based
approach proposed in [9], the plant dynamics is further used
to produce future control signals to actively compensate for
the random network-induced delay in the forward channel
with the use of a corresponding time-delay compensator at the
actuator side. A better performance can be expected since the
predictive control-based approach takes greater advantage of
the knowledge available.

In this paper, following the predictive control-based approach
in [9], we extend its application to networked Hammerstein
systems where a static nonlinear input process and random
network-induced delays and data packet dropouts in both for-
ward and backward channels exist. In order to deal with the
static input nonlinearity of the Hammerstein system, a two-step
design approach that is similar to that in [13] is applied, the key
idea of which is to design for the linear part of the Hammerstein
system first and then compensate for the input nonlinearity
using an inverse process. The inaccuracy in compensation for
the nonlinear input process is assumed to satisfy a sector
constraint based on which the stability criteria of the closed-
loop system are obtained. Compared with previous results, the
main advantage of the predictive controller designed in this
paper is that only delayed sensing data are used, whereas in [9],
the previous control signals up to the current step were all
required, which data will be shown later to be hard to obtain
in practice (Remark 2). To correspond to the new predic-
tive controller, a novel compensation scheme for the commu-
nication constraints, which is called the delay and dropout
compensation scheme (DDCS), is designed, which consists of
three components: a matrix selector at the controller side to
compensate for the network-induced delay in the backward
channel, a delay compensator at the actuator side to compensate
for the network-induced delay and data packet dropout in the
forward channel, and a horizon adjustor for the controller to
compensate for the network jitter by adjusting the control hori-
zon according to current network condition (see Fig. 1 for the
whole structure). The implementation of DDCS makes the pre-
dictive control-based approach work well in a network-based
environment.

The remainder of this paper is organized as follows. The
design of the proposed approach is presented in Section II.
Then, the theoretical results for the system stability and the sim-
ulation results are presented in Sections III and IV, respectively.
The conclusions are given in Section V.
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Fig. 1. Structure of networked predictive control system with input nonlinearity.

II. DESIGN OF NETWORKED PREDICTIVE CONTROL

SYSTEM WITH INPUT NONLINEARITY

The following single-input–single-output Hammerstein
system S is considered in this paper:

S :

⎧
⎨

⎩

x(k + 1) = Ax(k) + bv(k) (1a)
y(k) = cx(k) (1b)
v(k) = f (u(k)) (1c)

where x ∈ Rn, u, v, y ∈ R, and f(·) : R → R is a memoryless
static nonlinear function.

In this section, we present first the design details of the two-
step predictive control approach to system S and then the design
of DDCS to compensate for the network-induced delays and
data packet dropout when such a system is implemented in a
networked control environment.

A. Design of the Two-Step Predictive Control Approach

The key idea of the typical two-step predictive control ap-
proach is to design an intermediate control signal v(k) of the
linear part of system S [(1a) and (1b)] with a linear predic-
tive control method (a linear generalized predictive control
(LGPC) method is adopted in this paper) first and then obtain
the real control signal u(k) for system S from the nonlinear
relationship v(k) = f(u(k)) [10], [13]. In a networked control
environment, the typical two-step predictive control approach
is modified as follows with the consideration of the network-
induced delays.
1) Design of LGPC: In the presence of the network-induced

delay, the following modified quadratic objective function is
adopted:

J(N1, N2, Nu) =
N2∑

j=N1

qj (ŷ(k + j|k − τsc,k) − ω(k + j))2

+
Nu∑

j=1

rj∆v2(k + j − 1) (2)

where N1 and N2 are the minimum and maximum prediction
horizons, Nu is the control horizon, qj , N1 ≤ j ≤ N2, and rj ,

1 ≤ j ≤ Nu, are weighting factors, ω(k + j), j = N1, . . . , N2,
are the set points, ∆v(k) = v(k) − v(k − 1) is the control
increment, and ŷ(k + j|k − τsc,k), j = N1, . . . , N2, are the
forward predictions of the system outputs, which are obtained
on data up to time k − τsc,k and will be calculated in detail
later, where τsc,k is the network-induced delay in the backward
channel at time k.

Let x̄(k) = [xT(k) v(k − 1) ]T, then system S can be
represented by S ′ as

S ′ :
{

x̄(k + 1) = Āx̄(k) + b̄∆v(k) (3a)
y(k) = c̄x̄(k) (3b)

where Ā =
(

A b
0 1

)
, b̄ =

(
b
1

)
, and c̄ = ( c 0 ). Thus, the

j′ step forward output prediction at time k′ is

ŷ(k′ + j′|k′) = c̄Āj′
x̄(k′) +

j′−1∑

l′=0

c̄Āj′−l′−1b̄∆v(k′ + l′|k′).

Let j′ = j + τsc,k, k′ = k − τsc,k, and l′ = l + τsc,k. Then
the forward output predictions at time k based on the informa-
tion of the state on time k − τsc,k and control signals from time
k − τsc,k − 1 are

ŷ(k + j|k − τsc,k) = c̄Āj+τsc,k x̄(k − τsc,k)

+
j−1∑

l=−τsc,k

c̄Āj−l−1b̄∆v(k + l|k − τsc,k). (4)

If the state vector x is not available, an observer must be
included

x̂(k + 1|k) = Ax̂(k|k − 1) + bv(k)

+L (ym(k) − cx̂(k|k − 1)) (5)

where ym(k) is the measured output. If the plant is subject
to white noise disturbances affecting the process and the out-
put with known covariance matrices, the observer becomes a
Kalman filter, and the gain L is calculated solving a Riccati
equation.
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Let Ŷ (k|k−τsc,k) = [ŷ(k+N1|k−τsc,k) · · · ŷ(k + N2|k −
τsc,k)]T, ∆V ′(k|k − τsc,k) = [∆v(k − τsc,k|k − τsc,k) · · ·
∆v(k + Nu − 1|k − τsc,k)]T. Then

Ŷ (k|k − τsc,k)=Eτsc,k x̄(k − τsc,k) +Fτsc,k∆V ′(k|k − τsc,k)
(6)

where Eτsc,k = [ (c̄ĀN1+τsc,k)T · · · (c̄ĀN2+τsc,k)T ]T and
Fτsc,k is an (N2 − N1 + 1) × (Nu + τsc,k) matrix with the
non-null entries defined by (Fτsc,k)ij = c̄ĀN1+τsc,k+i−j−1b̄,
j − i ≤ N1 + τsc,k − 1. Note here that Eτsc,k and Fτsc,k vary
with different τsc,k’s.

Let ϖk = [ω(k + N1) · · · ω(k + N2) ]T. Then the opti-
mal predictive control increments from k to k + Nu − 1 can be
calculated by letting ∂J(·)/∂∆V ′ = 0

∆V (k|k − τsc,k) = Mτsc,k

(
ϖk − Eτsc,k x̄(k − τsc,k)

)
(7)

where ∆V (k|k−τsc,k)= [∆v(k|k−τsc,k) · · · ∆v(k+Nu −
1|k − τsc,k)]T, Mτsc,k = Hτsc,k(FT

τsc,k
QFτsc,k + R)−1FT

τsc,k
Q,

Q and R are diagonal matrices with Qi,i = qi and Ri,i = ri,
respectively, and Hτsc,k = [0Nu×τsc,k INu×Nu ], with INu×Nu

being the identity matrix with rank Nu.
Remark 1: Normally, the minimum prediction horizon can

be set as one. Rewrite the maximum prediction horizon N2

as Np. The following constraint between Nu and Np needs
to be always held in order to implement the LGPC method
successfully:

Nu ≤ Np. (8)

Remark 2: In [9], the previous control signals v(k −
1), . . . , v(k − τsc,k) are used to calculate the predictive control
sequence at time k. However, this information is hard to obtain
for the controller in practice due to the random network-
induced delays in both channels. As will be discussed further
in Section II-B, in a networked predictive control environment,
a sequence of future control signals is packed and sent to the
actuator, and the actuator only selects one from the sequence
according to the specific time delay in the forward channel.
Therefore, the controller does not know the real control signal
adopted by the actuator until it receives the information about
the previous control signals applied to the actuator. Only in
such a special case that, with no delay in the forward channel,
the previous control signals are all known by the controller
immediately. Therefore, in this paper, we develop a new method
to deal with this problem, in which only the control and state
(output) information at time k − τsc,k is used to generate the
predictive control sequence, by including the control sequence
from time k − τsc,k to k − 1 as part of the predictive control
sequence. As a result, the forward predictive control sequence
obtained depends only on delayed sensing data at time k − τsc,k

(7), which is always available to the controller [see Assumption
A3)], thus enabling the approach to be feasible in practice.
2) Nonlinear Input Process: Assuming that the nonlinear

function f(·) is invertible and denoting its inverse by f̂−1(·),
then

∆u(k) = f̂−1 (∆v(k)) . (9)

Thus, at every time instant k, the intermediate control in-
crements ∆v(k), k = 1, 2, . . . , Nu, can be obtained from (7),
and then, the real control increments ∆u(k), k = 1, 2, . . . , Nu,
can be calculated from (9), thus enabling the control law to be
derived for system S ′.

If ∆u(k) can be calculated accurately using (9), thus en-
abling the function f̂−1(·) to be exactly known, then the system
with compensation for the nonlinear input process is equivalent
to LGPC, and the system is stable if and only if the linear
part of system S with LGPC is stable. However, in practice,
it is usually impossible to calculate u(k) that accurately, i.e.,
f̂−1(f(·)) ̸= 1(·). This inaccuracy introduces to the LGPC
a nonlinear disturbance, which makes the stability analysis
difficult.

For simplicity of notation, let ˆ⃗
f
−1

(·) : RNu → RNu

with ˆ⃗
f
−1

(∆V (k|k − τsc,k)) = [f̂−1(∆v(k|k − τsc,k)) · · ·
f̂−1(∆v(k + Nu − 1|k − τsc,k))]T. Then, from the earlier
discussion, the real predictive control increment sequence for
system S can be represented by

∆U(k|k − τsc,k) = ˆ⃗
f

−1

(∆V (k|k − τsc,k) (10)

where ∆U(k|k − τsc,k) = [∆u(k|k − τsc,k) · · · ∆u(k +
Nu − 1|k − τsc,k)]T.

Remark 3: Note that the control increment, instead of the
control signal itself, is used in the compensation for the nonlin-
ear input process in (9). Although the use of control increments
complicates the problem in that the past control increments
are also needed to determine the current control increment,
it is inevitable since the objective function to be optimized
takes the form of control increments. In order to implement the
predictive controller in this paper, the past control increments
are sent to the controller as well as the state information [see
Assumption A3)], which is different from conventional control
systems. Note that for a system without a nonlinear input
process (1c), it makes no difference whether the intermediate
control increment or the intermediate control signal itself is
used to calculate the real control signal, whereas for system S,
generally, these two methods give different control input at
time k, i.e., f(∆v(k)) ̸= f(v(k)) − f(v(k − 1)).

B. Design of DDCS

To enable the predictive controller designed in this paper
to work appropriately in a networked control environment,
a DDCS is proposed to compensate for the network-induced
delay and data packet dropout in NCSs.

The following assumptions are first made for the DDCS
design.

A1) Each data packet containing the sensing data is sent
with a time stamp to notify when it was sent from sensor
to controller. This enables the network-induced delay in
the backward channel for each data packet known to the
controller. This information is then used to calculate the
appropriate control predictions.

A2) At every time instant k, the control predictions
∆U(k|k − τsc,k) with time stamps k and τsc,k are
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packed into one data packet and sent to the actuator.
These time stamps are to notify the time when it
was sent and also the network-induced delay in the
backward channel which the calculation of the control
predictions was based on. This enables the network-
induced delays in both channels for each control pre-
dictive sequence known to the actuator.

A3) The information of the control increment signal actually
applied to the plant is also sent to the controller.

A4) The control horizon is chosen in such a way that the
sum of the maximum network-induced delay in the
forward channel (noted by τ̄ca) and the maximum num-
ber of continuous data packet dropout (noted by χ̄) is
bounded by Nu, i.e.,

τ̄ca + χ̄ ≤ Nu − 1. (11)

Remark 4: The data packet dropout is not treated as a long
delay in this paper. They are simply ignored, and the measure-
ment of the delay bound is only over those received successfully
so that the delay bound can be assumed to be finite. In this way,
the data packet dropout does not need to be specially treated.
This can be compared with the approaches in [14] and [15],
where the effect of the data packet dropout is explicitly
considered.

Based on the aforementioned assumptions, the three compo-
nents of the DDCS, the matrix selector, the delay compensator,
and the horizon adjustor, which are to deal with the network-
induced delay in the backward channel, network-induced de-
lay and data packet dropout in the forward channel, and the
network jitter, respectively, are presented in the following
sections.
1) Compensation for the Random Network-Induced Delay

in the Backward Channel—A Matrix Selector: Note that the
matrices Eτsc,k , Fτsc,k , Mτsc,k , and Hτsc,k are all needed to
implement the predictive controller in (7), which vary with
τsc,k and, if computed online, will present a great computation
burden for the controller and introduce additional computation
delay to the system. Fortunately, although these matrices vary
with the delay in the backward channel, they can be calculated
offline since all the matrices are fixed for a given τsc. This
advantage enables us to calculate offline all the matrices with
respect to the specific τsc’s, to store them in a device called
the “matrix selector,” and to just choose the appropriate ones
from the matrix selector when calculating online the predictive
control increments according to the current value of the delay
τsc,k, which is known to the controller from Assumption A1).
In this way, the computation delay can be reduced to a certain
extent.

Let Esc = {E0, E1, . . . , Eτ̄sc}, Fsc = {F0, F1, . . . , Fτ̄sc},
Msc = {M0,M1, . . . ,Mτ̄sc}, and Hsc = {H0,H1, . . . , Hτ̄sc},
where τ̄sc is the upper bound of the network-induced delay
in the backward channel, then we have for any k (or τsc,k),
Eτsc,k ∈ Esc, Fτsc,k ∈ Fsc, Mτsc,k ∈ Msc, and Hτsc,k ∈ Hsc,
respectively. For a practical implementation, these 4×(τ̄sc+1)
matrices are calculated offline and stored in the matrix selector
for online use.

2) Compensation for the Random Network-Induced Delay
and Data Packet Dropout in the Forward Channel—A Delay
Compensator: As presented in Assumption A2), the predictive
control increment sequence ∆U(k|k − τsc,k) is sent to the
actuator all in one data packet. When a new sequence arrives
at the actuator side, it is compared with the one already in the
so-called “delay compensator” according to the time stamps
(which notify the time when the sequences were sent from
the controller), and only the one with the latest time stamp
is stored. The delay compensator is specially designed for
the actuator, and it can only store one control sequence (data
packet) at any time. For example, denote the sequence that
arrives at the actuator side as ∆U(k1|k1 − τsc,k1) with a time
stamp k1 and the one already in the delay compensator as
∆U(k2|k2 − τsc,k2) with a time stamp k2. Then, if k1 > k2,
∆U(k2|k2 − τsc,k2) will be replaced by ∆U(k1|k1 − τsc,k1);
otherwise, ∆U(k1|k1 − τsc,k1) will be simply discarded, and
the delay compensator remains unchanged.

The comparison process is introduced at the actuator side
due to the fact that different data packets may experience
different delays in the forward channel, thereby producing a
situation where, for example, a data packet sent earlier from
the controller may arrive at the actuator later or may never
arrive in the case of data packet dropout. As a result of the
comparison process, the predictive control sequence stored in
the delay compensator is always the latest one available at any
specific time.

As for the actuator, it can be either time driven or event
driven. The difference between the two driven methods lies in
the trigger method that initiates the actuator. For time-driven
actuator, the actuator is trigged to work at regular intervals,
no matter whether the delay compensator is updated or not,
whereas for event-driven actuator, it is only trigged by the
update of the delay compensator, i.e., a new predictive control
sequence is stored in the delay compensator. Whatever method
is used, the actuator selects the appropriate control increment
signal which can compensate for current network-induced de-
lay in the forward channel from the predictive control increment
sequence in the delay compensator at every execution time
instant and then applies it to the plant. The method to choose
the appropriate control increment signal at a specific time
will be explained in detail in the next section. It is necessary
to point this out that the appropriate control increment is
always available using the delay compensator provided that
Assumption A4) holds.

3) Compensation for the Network Jitter—A Horizon Ad-
justor: A larger control horizon generally leads to a better
performance for a typical GPC implementation, whereas in a
networked control environment, a larger control horizon means
a greater computation burden for the controller and, more
severely, a greater communication burden for the network,
since more control predictions are computed and transmitted
through the network (note that the size of the control pre-
dictive sequence is proportional to the control horizon Nu).
This may result in network traffic congestion and makes the
performance of the NCS worse on the contrary. Therefore, we
argue that an appropriately chosen control horizon is important
for the performance of the proposed approach, and hence, a
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horizon adjustor is proposed in this paper, which adjusts the
control horizon Nu by taking account of the current network
performance.

In the design of the horizon adjustor, the constraints for Nu

[see (8) and (11)] should always be satisfied for the success-
ful implementation of both the LGPC method and the delay
compensator. Notice also that the period of updating the control
horizon depends on the network conditions. A period of T can
be used if the network condition does not change much during
this period.

The horizon adjustor using a period T can therefore be
obtained as

Nu(kT ) =Nu ((k − 1)T ) + ψ (τ̄ca(t), χ̄(t)) (12a)

Nu(t) =Nu(kT ), t ∈ [kT (k + 1)T ) (12b)

with the constraints τ̄ca(t) + χ̄(t) + 1 ≤ Nu ≤ Np [constraints
(8) and (11)], where τ̄ca(t) and χ̄(t) are the upper bounds of the
network-induced delay and continuous data packet dropout in
the forward channel during the next period of T , respectively,
and ψ(·, ·) is an adjusting function to adjust the control horizon
dynamically with the network conditions. Since the future net-
work condition is unavailable in practice, previous information
could be used instead. A simple form of ψ(·, ·) can then be

ψ(τ̄ca(t), χ̄(t)) = ρt ·(τ̄ca(t) + χ̄(t) − τ̄ca(t − 1) − χ̄(t − 1))
(13)

where ρt is an adjusting factor to reflect the extent of the
network jitter. ρt will be set to be large if the network jitter
is severe and vice versa.

In the implementation of the horizon adjustor, Np remains to
be a constant which results in Esc unchanged. What is required
is to calculate different sets of Fτsc,k , Mτsc,k , and Hτsc,k with
respect to different Nu’s offline and store them in the matrix
selector for online use. Np is chosen in such a way that the
data packet containing the control predictions does not exceed
the packet size limit of the network used even if Nu = Np,
which enables the control predictions to be packed into one
data packet.

The two-step predictive control approach with DDCS can
now be summarized as follows, within a specific period T of
the horizon adjustor.

S1) Calculation. The predictive controller calculates the
intermediate predictive control increment sequence
∆V (k|k − τsc,k) using (7) with the use of the proposed
matrix selector and delayed information of states and con-
trol signals. The predictive control increment sequence
∆U(k|k − τsc,k) is then obtained by compensating for
the nonlinear input process using (10).

S2) Forward transmission. ∆U(k|k − τsc,k) is packed and
sent to the actuator simultaneously with time stamps k
and τsc,k.

S3) Comparison. The delay compensator updates its infor-
mation according to the time stamps once a data packet
arrives.

Fig. 2. Time delays of the control signal adopted by the actuator at time k.

S4) Execution. An appropriate control increment signal is
picked out from the control sequence in the delay com-
pensator and applied to the plant.

S5) Backward transmission. The information of the applied
control increment with the sensing state is sent to the
controller.

The structure of the predictive control-based approach
with DDCS [the so-called “networked predictive control sys-
tems”(NPCSs)] is shown in Fig. 1.

III. STABILITY ANALYSIS

In this section, the closed-loop formulation of such an NPCS
with a nonlinear input process is derived, and then, the sta-
bility theorem is obtained by using a switched system theory
under a sector constraint of the nonlinearity due to calculation
inaccuracy.

A. Closed-Loop System

Let τ ∗
ca,k denote the network-induced delay in the forward

channel of the predictive control increment sequence, from
which the control signal is picked out by the actuator at time
instant k. The time when the sequence was sent from the
controller side can then be read from its time stamp as

k∗ = k − τ ∗
ca,k = max

j
{j|∆U(j|j − τsc,j) ∈ Γk} (14)

where Γk is the set of the predictive control increment se-
quences that is available during time interval (k − 1, k] at the
actuator side, including not only the one in the delay com-
pensator but also others that arrive at the actuator during this
interval (see Fig. 2). From (10) and (14), the control signal
adopted by the actuator at time k is obtained as

∆u(k) = ∆u (k|k − τ ∗
k)

= dT
τ∗
ca,k

∆U
(
k − τ ∗

ca,k|k − τ ∗
k

)
(15)

where dτ∗
ca,k

is an Nu × 1 matrix with all entries being zero,
except that (τ ∗

ca,k + 1)th is one, τ ∗
k is the round trip time with

respect to τ ∗
ca,k, i.e., τ ∗

k = τ ∗
ca,k + τ ∗

sc,k, and τ ∗
sc,k = τsc,k∗ .

From (7) and (10) and noticing for any vector V with an ap-

propriate dimension, dT
τ∗
ca,k

ˆ⃗
f
−1

(V ) = f̂−1(dT
τ∗
ca,k

V ) recalling
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the definition of ˆ⃗
f
−1

(·); thus, we obtain (assume that the set
point ω = 0 without loss of generality)

∆u(k) = dT
τ∗
ca,k

∆U
(
k − τ ∗

ca,k|k − τ ∗
k

)

= dT
τ∗
ca,k

ˆ⃗
f
−1 (

∆V (k − τ ∗
ca,k|k − τ ∗

k

)

= f̂−1
(
dT

τ∗
ca,k

∆V (k − τ ∗
ca,k|k − τ ∗

k

)

= f̂−1
(
−K∗

τ,kx̄ (k − τ ∗
k)

)
(16)

where K∗
τ,k = dT

τ∗
ca,k

Mτsc,kEτsc,k .1 The real control increment
for linear system [(1a) and (1b)] at time k can then be
obtained as

∆v(k) = f (∆u(k)) = f ◦ f̂−1
(
−K∗

τ,kx̄ (k − τ ∗
k)

)
(17)

where f ◦ f̂−1(·) = f(f̂−1(·)) is the composite function of f(·)
and f̂−1(·).

Let X(k) = [ x̄T(k − τ̄) · · · x̄T(k) ]T, w(k) = ∆v(k).
Then the closed-loop system can be represented by

S∗ :

⎧
⎨

⎩
X(k + 1) = ÃX(k) + b̃w(k) (18a)

w(k) = f ◦ f̂−1
(
−K∗

τ̄ ,kX(k)
)

(18b)

where b̃ = [ 0n+1,1 · · · 0n+1,1 b̄T
n+1,1 ]T, K∗

τ̄ ,k is a 1 ×
(τ̄ + 1) block matrix with a block size of 1 × (n + 1), and all
its blocks are zero, except that (τ̄ + 1 − τ ∗

k)th is K∗
τ,k (the set

of all the possible K∗
τ̄ ,k’s will be denoted by K), and

Ã =

⎛

⎜⎜⎜⎜⎝

0n+1 In+1

0n+1 In+1 0
. . .

. . .
0 0n+1 In+1

Ā

⎞

⎟⎟⎟⎟⎠
.

B. Stability Analysis

As has been pointed out in Section II-A2, the compensa-
tion for the nonlinear input process using (9) is generally not
accurate, and this inaccuracy introduces to the linear part of
the system [see (1a) and (1b)] a nonlinear disturbance, which
appears in the form of f ◦ f̂−1(·). Although, generally, f ◦
f̂−1(·) ̸≡ 1, it is reasonable to assume that the calculation error
meets some accuracy requirement to a certain extent, which
results in a sector constraint of the term f ◦ f̂−1(·), as described
in Assumption A5) as follows.2

A5) The nonlinearity due to the calculation inaccuracy is
supposed to satisfy a sector constraint, i.e., there exist
0 < ε ≤ ε̄ < ∞, s.t.

εα ≤ f ◦ f̂−1(α) ≤ ε̄α, ∀α ∈ R. (19)

1Note that the value of K∗
τ,k varies with the delays in both channels, and

thus, it has (τ̄ca + 1)(τ̄sc + 1) different values in total.
2Note that, although it is reasonable to place a sector constraint as in

Assumption A5) to f ◦ f̂−1(·), it is somewhat conservative since the calcu-
lation of some strongly nonlinear function may not be that accurate and, thus,
does not satisfy A5).

This constraint can be denoted by

f ◦ f̂−1(·) ∈ [ε, ε̄]. (20)

Notice here that, generally, 0 < ε ≤ 1 ≤ ε̄ < ∞.
By using Assumption A4), we obtain that for any specific

α ∈ R, there exists a real number εα, ε ≤ εα ≤ ε̄, such that
f ◦ f̂−1(α) = εαα; (18b) can thereby be rewritten as

w(k) = f ◦ f̂−1
(
−K∗

τ̄ ,kX(k)
)

= − εkK∗
τ̄ ,kX(k) (21)

where εk ∈ [ε, ε̄] represents the compensation for the specific
nonlinearity for the term K∗

τ̄ ,kX(k) at time k.
Recalling (18a) and (21), the closed-loop system S∗ can then

be written as

X(k + 1) = ÃX(k) + b̃w(k)

=
(
Ã − εk b̃K∗

τ̄ ,k

)
X(k)

= Λ
(
εk,K∗

τ̄ ,k

)
X(k) (22)

where the closed-loop matrix Λ(εk,K∗
τ̄ ,k) = Ã − εk b̃K∗

τ̄ ,k has
the form

Λ
(
εk,K∗

τ̄ ,k

)
=

⎛

⎜⎜⎜⎜⎝

0n+1 In+1

0n+1 In+1 0
. . .

. . .
0 0n+1 In+1

· · · −εk b̄K∗
τ,k · · · Ā

⎞

⎟⎟⎟⎟⎠
.

The position and value of the term −εk b̄K∗
τ,k depend on

the specific delays in the both channels at time k, i.e.,
(Λ(εk,K∗

τ̄ ,k))τ̄+1,j = −εk b̄K∗
τ,k, j = τ ∗

k = 1, 2, . . . , τ̄ , and
(Λ(εk,K∗

τ̄ ,k))τ̄+1,τ̄+1 = Ā − εk b̄K∗
τ,k, if τ ∗

k = τ̄ + 1.
Theorem 1: The closed-loop system S∗ is stable if A4) holds

and there exists a positive definite solution P = PT > 0 for the
following 2(τ̄ca + 1)(τ̄sc + 1) LMIs:

ΛT
(
ε,K∗

τ̄ ,k

)
PΛ

(
ε,K∗

τ̄ ,k

)
− P ≤ 0 (23a)

ΛT
(
ε̄,K∗

τ̄ ,k

)
PΛ

(
ε̄,K∗

τ̄ ,k

)
− P ≤ 0 (23b)

where K∗
τ̄ ,k ∈ K.

Proof: Let V (k) = XT(k)PX(k) be a Lyapunov func-
tion candidate, then the incremental V (k) for system S∗ can be
obtained using (22)

∆V (k) = XT(k)
(
Λ

(
εk,K∗

τ̄ ,k

)T
PΛ

(
εk,K∗

τ̄ ,k

)
− P

)
X(k)

= XT(k)
(
ÃTPÃ−P−εkÃTP b̃K∗

τ̄ ,k−εkK∗T
τ̄ ,k b̃TPÃ

+ ε2
kK∗T

τ̄ ,k b̃TP b̃K∗
τ̄ ,k

)
X(k)

! XT(k)A
(
εk,K∗

τ̄ ,k

)
X(k) (24)

where εk ∈ [ε, ε̄] and K∗
τ̄ ,k ∈ K.
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Notice that for any εk ∈ [ε, ε̄], there exists 0 ≤ λk ≤ 1 s.t.
εk = λkε + (1 − λk)ε̄, and thus, we obtain by substituting this
into (24)

A
(
εk,K∗

τ̄ ,k

)
= λkA

(
ε,K∗

τ̄ ,k

)
+ (1 − λk)A

(
ε̄,K∗

τ̄ ,k

)

− λk(1 − λk)(ε − ε̄)2K∗T
τ̄ ,k b̃TP b̃K∗

τ̄ ,k. (25)

From (23a), (23b), and (24), A(ε,K∗
τ̄ ,k) and A(ε̄,K∗

τ̄ ,k) are
seminegative definite for all K∗

τ̄ ,k ∈ K. Notice that P is sym-

metric positive definite and that K∗T
τ̄ ,k b̃TP b̃K∗

τ̄ ,k is semipositive
definite as a symmetric matrix, thus enabling A(εk,K∗

τ̄ ,k) to be
seminegative definite for any εk ∈ [ε, ε̄] and K∗

τ̄ ,k ∈ K, which
completes the proof. "
Remark 5: It is necessary to point this out that according

to Assumption A5) and Theorem 1, what is required for the
stability of the system is to satisfactorily meet the sector con-
straint in (20) no matter how the inverse function f̂−1(·) is
calculated. It implies that the function f(·) does not need to be
theoretically invertible as long as its inverse can be obtained by
a numerical method and satisfies the sector constraint [one can
refer to [16] and the references therein for more information of
the calculation of f̂−1(·)].

Remark 6: When the horizon adjuster is also considered, the
feedback gain K∗

τ̄ ,k in (16) will depend on a different control
horizon Nu and can be rewritten as K∗

τ̄ ,Nu,k. Thus, the set
K now consists of all the possible K∗

τ̄ ,Nu,k, mint(τca(t) +
χ(t)) + 1 ≤ Nu ≤ Np. A similar stability criterion to
Theorem 1 can then be obtained analogously.

The following two special conditions are also considered for
the stability of the closed-loop system.
C1) The network-induced delays in both channels are constant

(noted by τ0
sc and τ0

ca, respectively).
C2) The calculation of the inverse of the nonlinear function is

accurate.
The following corollary can be easily obtained by using

Theorem 1.
Corollary 1: The closed-loop system S∗ is stable if any one

of the following three conditions holds.
1) A4) and C1) hold, and there exists a positive definite

solution P = PT > 0 for the following two LMIs:

ΛT
(
ε,K∗

τ̄ ,k

)
PΛ

(
ε,K∗

τ̄ ,k

)
− P ≤ 0 (26a)

ΛT
(
ε̄,K∗

τ̄ ,k

)
PΛ

(
ε̄,K∗

τ̄ ,k

)
− P ≤ 0 (26b)

where τsc,k ≡ τ0
sc, τca,k ≡ τ0

ca, and K∗
τ̄ ,k is therefore

fixed.
2) C2) holds, and there exists a positive definite solution

P = PT > 0 for the following (τ̄ca + 1)(τ̄sc + 1) LMIs:

ΛT
(
1,K∗

τ̄ ,k

)
PΛ

(
1,K∗

τ̄ ,k

)
− P ≤ 0 (27)

where K∗
τ̄ ,k ∈ K.

3) Both of C1) and C2) hold, and there exists a positive
definite solution P = PT > 0 for the following LMI:

ΛT
(
1,K∗

τ̄ ,k

)
PΛ

(
1,K∗

τ̄ ,k

)
− P ≤ 0 (28)

where τsc,k ≡ τ0
sc, τca,k ≡ τ0

ca, and K∗
τ̄ ,k is therefore

fixed.

Fig. 3. State evolution using LQR method.

Fig. 4. State evolution using the approach in this paper.

IV. SIMULATION

In this section, a second-order Hammerstein model is
adopted to illustrate the effectiveness of the proposed approach.
The system matrices in (1a) and (1b) of system S are set as
follows which is open-loop unstable:

A =
(

0.98 0.1
0 1

)
b =

(
0.04
0.1

)
c = ( 1 0 ).

We first use this linear system [see (1a) and (1b)] to il-
lustrate the effectiveness of the proposed predictive controller
and the compensation scheme DDCS for the communication
constraints. In order to do this by comparison, the linear
quadratic optimal (LQR) control method is used to design a
state feedback law for this system without consideration of
the communication constraints, which yields the feedback gain
KLQR = [ 0.7044 1.3611 ]. The simulation result shows that
it is unstable using this LQR control when there is random
delays in both channels (the upper bounds of the delays are
τ̄ = 3, τ̄ca = 2, and τ̄sc = 1, see Fig. 3), whereas it is stable
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Fig. 5. Random delays in the forward channel.

Fig. 6. Effectiveness of the compensation for the input nonlinear process.

using the proposed approach in this paper (Fig. 4). The random
delays in the forward channel are shown in Fig. 5. Other
parameters of the simulation are chosen as Nu = 8, Np = 10,
and the initial state x0 = [−1 −1 ]T. The delays in both
channels are set to vary randomly within their upper bounds.

Note the fact that with an inverse process to compensate
for the static input nonlinearity in the Hammerstein system,
from (18b), we know that the system performance only depends
on the accuracy of this compensation process, i.e., the size
of the sector constraint [ε, ε̄] for f ◦ f̂−1(·) [see (20)]. In this
simulation, we set [ε, ε̄] = [0.5, 1.5], which means that there
is approximately 50% error in the compensation for the input
nonlinearity, whereas the input nonlinear function f(·) can
be of any form provided that this compensation accuracy is
satisfied. All the other parameters are set as the same as the
aforementioned ones. Such a system with those parameters can
be proved to be stable using Theorem 1.

The effect of the compensation for the input nonlinearity is
shown in Fig. 6, from which it is seen that the compensation
accuracy for the input nonlinearity is effective.

V. CONCLUSION

In this paper, a novel approach with the integration of the
two-step predictive control method and a DDCS is proposed
for a Hemmerstein system in a networked control environment.
In the approach, the predictive controller for the linear part of
the system is first designed by using delayed sensing data, and
the nonlinear input can be viewed as a nonlinear disturbance
after a compensation scheme. The communication constraints
considered in this paper, i.e., random delays in both channels
and data packet dropout in the forward channel, are dealt with
by the DDCS, which consists of three components configured at
both the controller and actuator sides. The stability theorem for
the closed-loop system is obtained by using switched system
theory. Simulation work has also been done to illustrate the
effectiveness of the proposed approach.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and the
anonymous referees for their insightful comments and sugges-
tions which helped to improve this paper.

REFERENCES

[1] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked
control systems,” in Proc. Amer. Control Conf., San Diego, CA, 1999,
vol. 4, pp. 2876–2880.

[2] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked
control systems,” Control Eng. Pract., vol. 11, no. 10, pp. 1099–1111,
Oct. 2003.

[3] Y. Zheng, H. Fang, and H. O. Wang, “Takagi–Sugeno fuzzy-model-based
fault detection for networked control systems with Markov delays,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 4, pp. 924–929,
Aug. 2006.

[4] S. T. Liu and C. Kao, “Network flow problems with fuzzy arc lengths,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 765–769,
Feb. 2004.

[5] J. Baillieul and P. J. Antsaklis, “Control and communication challenges
in networked real-time systems,” Proc. IEEE, vol. 95, no. 1, pp. 9–27,
Jan. 2007.

[6] L. A. Montestruque and P. J. Antsaklis, “On the model-based control
of networked systems,” Automatica, vol. 39, no. 10, pp. 1837–1843,
Oct. 2003.

[7] G. C. Goodwin, H. Haimovich, D. E. Quevedo, and J. S. Welsh, “A
moving horizon approach to networked control system design,” IEEE
Trans. Autom. Control, vol. 49, no. 9, pp. 1427–1445, Sep. 2004.

[8] G. P. Liu, Y. Xia, D. Rees, and W. Hu, “Networked predictive control
of systems with random network delays in both forward and feedback
channels,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1282–1297,
Jun. 2007.

[9] G. P. Liu, Y. Xia, D. Rees, and W. Hu, “Design and stability criteria of
networked predictive control systems with random network delay in the
feedback channel,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37,
no. 2, pp. 173–184, Mar. 2007.

[10] Y.-B. Zhao, G. P. Liu, and D. Rees, “Time delay compensation and
stability analysis of networked predictive control systems based on
Hammerstein model,” in Proc. IEEE Int. Conf. Netw., Sens. Control,
London, U.K., Apr. 2007, pp. 808–811.

[11] Y.-B. Zhao, G. P. Liu, and D. Rees, “Integrated predictive control and
scheduling co-design for networked control systems,” IET Control Theory
Appl., vol. 2, no. 1, pp. 7–15, Jan. 2008.

[12] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Predictive control
of switched nonlinear systems with scheduled mode transitions,” IEEE
Trans. Autom. Control, vol. 50, no. 11, pp. 1670–1680, Nov. 2005.

[13] B. Ding and Y. Xi, “A two-step predictive control design for input satu-
rated Hammerstein systems,” Int. J. Robust Nonlinear Control, vol. 16,
no. 7, pp. 353–367, May 2006.

[14] N. H. El-Farra, A. Gani, and P. D. Christofides, “Fault-tolerant control of
process systems using communication networks,” AIChE J., vol. 51, no. 6,
pp. 1665–1682, Jun. 2005.



708 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

[15] P. Mhaskar, A. Gani, C. McFall, P. D. Christofides, and J. F. Davis, “Fault-
tolerant control of nonlinear process systems subject to sensor faults,”
AIChE J., vol. 53, no. 3, pp. 654–668, Mar. 2007.

[16] G. Tao and P. V. Kokotovic, Adaptive Control of Systems With Actuator
and Sensor Nonlinearities. New York: Wiley, 1996.

Yun-Bo Zhao received the B.Sc. degree in mathe-
matics from Shandong University, Shandong, China,
in 2003, and the M.Sc. degree in systems theory
from the Institute of Systems Science, Chinese Acad-
emy of Sciences, Beijing, in 2007. He is currently
working toward the Ph.D. degree at the University of
Glamorgan, Pontypridd, U.K.

His research interests include networked control
systems, model predictive control, Markov jump sys-
tems, and switched systems.

Guo-Ping Liu (M’97–SM’99) received the B.Eng.
and M.Eng. degrees in electrical and electronic
engineering from the Central South University of
Technology (now the Central South University),
Changsha, China, in 1982 and 1985, respectively,
and the Ph.D. degree in control engineering from
the University of Manchester, Manchester, U.K.,
in 1992.

From 1992 to 1993, he did postdoctoral research
with the University of York, York, U.K. In 1994,
he was a Research Fellow with the University of

Sheffield, Sheffield, U.K., and a Visiting Professor with the Central South
University, Changsha, China. From 1996 to 2000, he was a Senior Engineer
with GEC-Alsthom and ALSTOM and then a Principal Engineer and a Project
Leader with ABB ALSTOM Power. From 2000 to 2003, he was a Senior
Lecturer with the University of Nottingham, Nottingham, U.K. He has been a
Professor with the Faculty of Advanced Technology, University of Glamorgan,
Pontypridd, U.K., since 2004, and a Visiting Professor with the Chinese
Academy of Sciences, Beijing, since 2000. He has worked in more than
50 academic research and industrial technology projects. He has more than
300 publications on control systems. He has authored or coauthored six books.
He is a Chair of control engineering with the University of Glamorgan. He is
the Editor-in-Chief of the International Journal of Automation and Computing.
His main research areas include networked control systems, modeling and
control of fuel cells, advanced control of industrial systems, nonlinear system
identification and control, and multiobjective optimization and control.

Prof. Liu is the General Chair of the 2007 IEEE International Conference
on Networking, Sensing and Control. He was awarded the Alexander von
Humboldt Research Fellowship in 1992. He received the best paper prize for
applications at the UKACC International Conference on Control in 1998. His
paper was shortlisted for the best application prize at the 14th IFAC World
Congress in 1999.

David Rees received the B.Sc. (Hons.) degree in
electrical engineering from the University of Wales,
Swansea, U.K., in 1967, and the Ph.D. degree from
the Council of National Academic Awards, U.K.,
in 1976.

He is currently a part-time Reader with the Faculty
of Advanced Technology, University of Glamorgan,
Pontypridd, U.K., where he was previously the Di-
rector of Research and Associate Head in the School
of Electronics. He has published over 170 journal
and conference publications. He was the Joint Editor

of Industrial Digital Control Systems (Peter Peregrinus, London: 1988) and has
contributed to numerous monographs; the latest is three chapters in Dynamic
Modelling of Gas Turbines—Identification, Simulation, Condition Monitoring
and optimal Control (Springer, 2004). His current research interests include
nonlinear modeling, system identification, and networked control systems.

Dr. Rees is a Fellow of the Institution of Engineering and Technology and a
past Chairman of the IEE Control Applications Professional Group. He was the
recipient of an IEE Premium Award in 1996.


